segunda-feira, 31 de janeiro de 2011

Placa - Mãe -Principais Características.

Introdução
Também conhecida como "motherboard" ou "mainboard", a placa -mãe é, basicamente, a responsável pela interconexão de todas as peças que formam o computador. O HD, a memória, o teclado, o mouse, a placa de vídeo, enfim, praticamente todos os dispositivos, precisam ser conectados à placa-mãe para formar o computador. Este artigo mostrará as características desse item tão importante.Visão geral das placas-mãe
As placas-mãe são desenvolvidas de forma que seja possível conectar todos os dispositivos quem compõem o computador. Para isso, elas oferecem conexões para o processador, para a memória RAM, para o HD, para os dispositivos de entrada e saída, entre outros.
A foto a seguir exibe uma placa-mãe. Trata-se de um modelo Soyo SY-KT880 Dragon 2. As letras apontam para os principais itens do produto, que são explicados nos próximos parágrafos. Cada placa-mãe possui características distintas, mas todas devem possibilitar a conexão dos dispositivos que serão citados no decorrer deste texto.
Foto de uma placa-mãe Soyo SY-KT880 Dragon 2
Item A - processador
O item A mostra o local onde o processador deve ser conectado. Também conhecido como socket, esse encaixe não serve para qualquer processador, mas sim para um modelo (ou para modelos) específico. Cada tipo de processador tem características que o diferenciam de outros modelos. Essas diferenças consistem na capacidade de processamento, na quantidade de memória cache, na tecnologia de fabricação usada, no consumo de energia, na quantidade de terminais (as "perninhas") que o processador tem, entre outros. Assim sendo, a placa-mãe deve ser desenvolvida para aceitar determinados processadores. A motherboard vista acima, por exemplo, é compatível com os processadores Duron, Athlon XP e Sempron (todos da fabricante AMD) que utilizam a forma de conexão conhecida por "Socket A". Assim sendo, processadores que utilizam outros sockets, como o Intel Pentium 4 ou o AMD Athlon 64 não se conectam a esta placa.
Por isso, na aquisição de um computador, deve-se escolher primeiro o processador e, em seguida, verificar quais as placas-mãe que são compatíveis. À medida que novos processadores vão sendo lançados, novos sockets vão surgindo.
É importante frisar que, mesmo quando um processador utiliza um determinado socket, ele pode não ser compatível com a placa-mãe relacionada. Isso porque o chip pode ter uma capacidade de processamento acima da suportada pela motherboard. Por isso, essa questão também deve ser verificada no momento da montagem de um computador.
Item B - Memória RAM
O item B mostra os encaixes existentes para a memória RAM. Esse conector varia conforme o tipo. As placas-mãe mais antigas usavam o tipo de memória popularmente conhecido como SDRAM. No entanto, o padrão mais usado atualmente é o DDR (Double Data Rate), que também recebe a denominação de SDRAM II (termo pouco usado). A placa-mãe da imagem acima possui duas conexões (ou slots) para encaixe de memórias DDR.
As memórias também trabalham em velocidades diferentes, mesmo quando são do mesmo tipo. A placa-mãe mostrada acima aceita memórias DDR que trabalham a 266 MHz, 333 MHz e 400 MHz. Supondo que a motherboard só aceitasse velocidades de até 333 MHz, um pente de memória DDR que funciona a 400 MHz só trabalharia a 333 MHz nessa placa, o máximo suportado.
Em relação à capacidade, as memórias mais antigas ofereciam 4 MB, 8 MB, 16 MB, 32 MB, 64 MB, etc. Hoje, já é possível encontrar memórias que vão de 128 MB a 1 GB de capacidade. Enquanto você lê este texto, pode ser que o limite atual já esteja maior.
Item C - Slots de expansão
Para que seja possível conectar placas que adicionam funções ao computador, é necessário fazer uso de slots de expansão. Esses conectores permitem a conexão de vários tipos de dispositivos. Placas de vídeo, placas de som, placas de redes, modems, etc, são conectados nesses encaixes. Os tipos de slots mais conhecidos atualmente são o PCI (Peripheral Component Interconnect) - item C1 -, o AGP (Accelerated Graphics Port) - item C2 -, o CNR (Communications Network Riser) - item C3 - e o PCI Express (PCI-E). As placas-mãe mais antigas apresentavam ainda o slot ISA (Industry Standard Architecture).
A placa-mãe vista acima possui um slot AGP (usado exclusivamente por placas de vídeo), um slot CNR (usado para modems) e cinco slots PCI (usados por placas de rede, placas de som, modems PCI, etc). A tendência atual é que tanto o slot AGP quanto o slot PCI sejam substituídos pelo padrão PCI Express, que oferece mais recursos e possibilidades.
Item D - Plug de alimentação
O item D mostra o local onde deve-se encaixar o cabo da fonte que leva energia elétrica à placa-mãe. Para isso, tanto a placa-mãe como a fonte de alimentação devem ser do mesmo tipo. Existem, atualmente, dois padrões para isso: o ATX e o AT (este último saiu de linha, mas ainda é utilizado). A placa-mãe da foto usa o padrão ATX. É importante frisar que a placa-mãe sozinha consegue alimentar o processador, as memórias e a grande maioria dos dispositivos encaixados nos slots. No entanto, HDs, unidades de CD e DVD, drive de disquete e cooler (um tipo de ventilador acoplado ao processador que serve para manter sua temperatura em limites aceitáveis de uso) devem receber conectores individuais de energia.
Item E - Conectores IDE e drive de disquete
O item E2 mostra as entradas padrão IDE (Intergrated Drive Electronics) onde devem ser encaixados os cabos que ligam HDs e unidades de CD/DVD à placa-mãe. Esses cabos, chamados de "flat cables", podem ser de 40 vias ou 80 vias (grossamente falando, cada via seria um "fiozinho"), sendo este último mais eficiente. Cada cabo pode suportar até dois HDs ou unidades de CD/DVD, totalizando até quatro dispositivos nas entradas IDE. Note também que E1 aponta para o conector onde deve ser encaixado o cabo que liga o drive de disquete à motherboard.
Existe também, um tipo de HD que não segue o padrão IDE, mas sim o SATA (Serial ATA), como mostra a figura a seguir.
Foto de encaixes para HDs SATA

Item F - BIOS e bateria
O item F2 aponta para o chip Flash-ROM e o F1, para a bateria que o alimenta. Esse chip contém um pequeno software chamado BIOS (Basic Input Output System), que é responsável por controlar o uso do hardware do computador e manter as informações relativas à hora e data. Cabe ao BIOS, por exemplo, emitir uma mensagem de erro quando o teclado não está conectado. Na verdade, quando isso ocorre, o BIOS está trabalhando em conjunto com o Post, um software que testa os componentes de hardware após o computador ser ligado.
Através de uma interface denominada Setup, também presente na Flash-ROM, é possível alterar configurações de hardware, como velocidade do processador, detecção de discos rígidos, desativação de portas USB, etc.
Como mostra a imagem abaixo, placas-mãe antigas usavam um chip maior para o BIOS.
Foto de um chip de BIOS
Item G - Conectores de teclado, mouse, USB, impressora e outros
O item G aponta para a parte onde ficam localizadas as entradas para a conexão do mouse (tanto serial, quanto PS/2), teclado, portas USB, porta paralela (usada principalmente por impressoras), além de outros que são disponibilizados conforme o modelo da placa-mãe. Esses itens ficam posicionados de forma que, quando a motherboard for instalada em um gabinete, tais entradas fiquem imediatamente acessíveis pela parte traseira deste. A imagem abaixo mostra um outro modelo de placa-mãe da Soyo, a SY-P4VGM, desenvolvida para o processador Intel Pentium 4, que exibe esses conectores através de outro ângulo:
Em destaque: conectores de dispositivos entrada e saída
A disposição de entradas vista acima é semelhante em toda placa-mãe que segue o padrão ATX. No antigo padrão AT, esse posicionamento é de outra forma e alguns conectores são diferentes.
H - Furos de encaixe
Para evitar danos, a placa-mãe deve ser devidamente presa ao gabinete. Isso é feito através de furos (item H) que permitem o encaixe de espaçadores e parafusos. Para isso, é necessário que a placa-mãe seja do mesmo padrão do gabinete. Se este for AT, a placa-mãe deverá também ser AT. Se for ATX (o padrão atual), a motherboard também deverá ser, do contrário o posicionamento dos locais de encaixe serão diferentes para a placa-mãe e para o gabinete.
I - Chipset
O chipset é um chip responsável pelo controle de uma série de itens da placa-mãe, como acesso à memória, barramentos e outros. Principalmente nas placas-mãe atuais, é bastante comum que existam dois chips para esses controles: Ponte Sul (I1) e Ponte Norte (I2):
Ponte Sul (South Bridge): este geralmente é responsável pelo controle de dispositivos de entrada e saída, como as interfaces IDE ou SATA. Placas-mãe que possuem som onboard (visto adiante), podem incluir o controle desse dispositivo também na Ponte Sul;
Ponte Norte (North Bridge): este chip faz um trabalho "mais pesado" e, por isso, geralmente requer um dissipador de calor para não esquentar muito. Repare que na foto da placa-mãe em que esse chip é apontado, ele, na verdade, está debaixo de uma estrutura metálica. Essa peça é dissipador. Cabe à Ponte Norte as tarefas de controle do FSB (Front Side Bus - velocidade na qual o processador se comunica com a memória e com componentes da placa-mãe), da freqüência de operação da memória, do barramento AGP, etc.
Os chipsets não são desenvolvidos pelas fabricantes das placas-mãe e sim por empresas como VIA Technologies, SiS e Intel (esta é uma exceção, já que fabrica motherboards também). Assim sendo, é comum encontrar um mesmo chipset em modelos concorrentes de placa-mãe.
Placas-mãe onboard
"Onboard" é o termo empregado para distinguir placas-mãe que possuem um ou mais dispositivos de expansão integrados. Por exemplo, há modelos que têm placa de vídeo, placa de som, modem ou placa de rede na própria placa-mãe. A motherboard estudada neste artigo possui placa de som (C-Media CMI9761A 6-channel) e placa de rede (VIA VT6103 10/100 Mbps Ethernet) integradas, ou melhor, onboard. Por esta razão, os conectores desses dispositivos ficam juntos às entradas mostradas no item G, visto anteriormente.
A vantagem de se utilizar modelos onboard é a redução de custo do computador, uma vez que deixa-se de comprar determinados dispositivos porque estes já estão incluídos na placa-mãe. No entanto, é necessário ter cuidado: quanto mais itens onboard uma placa-mãe tiver, mais o desempenho do computador será comprometido. Isso porque o processador acaba tendo que executar as tarefas dos dispositivos integrados. Na maioria dos casos, placas de som e rede onboard não influenciam significantemente no desempenho, mas placas de vídeo e modems sim.
As placas de vídeo, mesmo os modelos mais simples, possuem um chip gráfico que é responsável pela geração de imagens. Este, por sua vez, requer memória para tal, principalmente quando trata imagens em 3D. Uma placa de vídeo onboard, mesmo quando acompanhada de um chip gráfico integrado, acaba "tomando atenção" do processador, além de usar parte da memória RAM.

Se um computador é comprado para uso em uma loja ou em alguma aplicação que não requer muito desempenho, a compra de um computador com placa-mãe onboard pode ser viável. No entanto, quem deseja uma máquina para jogos e aplicações mais pesadas deve pensar seriamente em adquirir uma placa-mãe "offboard", isto é, com nenhum item integrado, ou no máximo, com placa de som ou rede onboard.


Edinilson e Verdin - 31/01/2011

Como instalar uma Impressora sem o CD.



Se você não tem o Cd de instalação de sua impressora ou encontra problemas para instalar em seu Pc pois o Cd ou o drive não são reconhecido, nada de pânico! Você vai encontrar a solução no site do fabricante de sua impressora. Atualmente os fabricantes disponibilizam gratuitamente os softwares das impressoras.

1° Passo
Entre no site do fabricante. Para encontrar o endereço faça o seguinte, digite no seu motor de buscas (navegador) o nome do fabricante de sua impressora. Por exemplo "HP impressoras" ou a marca e o modelo "HP Deskjet F4180". A página aberta exibirá vários links, clique naquele que levará você ao site do fabricante. Por exemplo na minha pesquisa encontrei este link do site, e por sorte, a página direta do modelo de minha impressora:
Clique aqui: http://h10025.www1.hp.com/...



2° Passo
Se obtive o link direto da página com o modelo de minha impressora basta baixar o drive. Atenção ao sistema operacional para não abortar o download. E, verificar a compatibilidade do drive com o sistema operacional do PC é imprescindível. Siga as instruções indicadas durante a instalação.
NB: Verifique se não tem instalado em seu PC nada referente à sua impressora. Caso você encontrar algo desinstale, através do painel de configurações > adicionar/remover programas. Reinicie seu Pc e instale o drive através do site acessado anteriormente.
Se você entrar na página inicial do site do fabricante busque a rubrica "impressoras" > modelo de sua impressora e baixe o drive.
NB: É importante ler o manual, sempre disponível no site do fabricante.
Pronto você solucionou o seu problema da falta de CD de instalação
 
Edinilson e Verdin - 31/01/2011 - é muita a nossa realidade,já que somos formadores de mentes para brilhar nesse mundo moderno e tecnológico.

Memória RAM

As memórias RAM (Random-Access Memory - Memória de Acesso Aleatório) constituem uma das partes mais importantes dos computadores, pois são nelas que o processador armazena os dados com os quais está lidando. Esse tipo de memória tem um processo de gravação de dados extremamente rápido, se comparado aos vários tipos de memória ROM. No entanto, as informações gravadas se perdem quando não há mais energia elétrica, isto é, quando o computador é desligado, sendo, portanto, um tipo de memória volátil.
Há dois tipos de tecnologia de memória RAM que são muitos utilizados: estático e dinâmico, isto é, SRAM e DRAM, respectivamente. Há também um tipo mais recente chamado de MRAM. Eis uma breve explicação de cada tipo:
- SRAM (Static Random-Access Memory - RAM Estática): esse tipo é muito mais rápido que as memórias DRAM, porém armazena menos dados e possui preço elevado se considerarmos o custo por megabyte. Memórias SRAM costumam ser utilizadas como cache (saiba mais sobre cache neste artigo sobre processadores);
- DRAM (Dynamic Random-Access Memory - RAM Dinâmica): memórias desse tipo possuem capacidade alta, isto é, podem comportar grandes quantidades de dados. No entanto, o acesso a essas informações costuma ser mais lento que o acesso às memórias estáticas. Esse tipo também costuma ter preço bem menor quando comparado ao tipo estático;
- MRAM (Magnetoresistive Random-Access Memory - RAM Magneto-resistiva): a memória MRAM vem sendo estudada há tempos, mas somente nos últimos anos é que as primeiras unidades surgiram. Trata-se de um tipo de memória até certo ponto semelhante à DRAM, mas que utiliza células magnéticas. Graças a isso, essas memórias consomem menor quantidade de energia, são mais rápidas e armazenam dados por um longo tempo, mesmo na ausência de energia elétrica. O problema das memórias MRAM é que elas armazenam pouca quantidade de dados e são muito caras, portanto, pouco provavelmente serão adotadas em larga escala.

Aspectos do funcionamento das memórias RAM

As memórias DRAM são formadas por chips que contém uma quantidade elevadíssima de capacitores e transistores. Basicamente, um capacitor e um transistor, juntos, formam uma célula de memória. O primeiro tem a função de armazenar corrente elétrica por um certo tempo, enquanto que o segundo controla a passagem dessa corrente.
Se o capacitor estiver armazenamento corrente, tem-se um bit 1. Se não estiver, tem-se um bit 0. O problema é que a informação é mantida por um curto de período de tempo e, para que não haja perda de dados da memória, um componente do controlador de memória é responsável pela função de refresh (ou refrescamento), que consiste em regravar o conteúdo da célula de tempos em tempos. Note que esse processo é realizado milhares de vezes por segundo.
O refresh é uma solução, porém acompanhada de "feitos colaterais": esse processo aumenta o consumo de energia e, por consequência, aumenta o calor gerado. Além disso, a velocidade de acesso à memória acaba sendo reduzida.
A memória SRAM, por sua vez, é bastante diferente da DRAM e o principal motivo para isso é o fato de que utiliza seis transistores (ou quatro transistores e dois resistores) para formar uma célula de memória. Na verdade, dois transistores ficam responsáveis pela tarefa de controle, enquanto que os demais ficam responsáveis pelo armazenamento elétrico, isto é, pela formação do bit.
A vantagem desse esquema é que o refresh acaba não sendo necessário, fazendo com que a memória SRAM seja mais rápida e consuma menos energia. Por outro lado, como sua fabricação é mais complexa e requer mais componentes, o seu custo acaba sendo extremamente elevado, encarecendo por demais a construção de um computador baseado somente nesse tipo. É por isso que sua utilização mais comum é como cache, pois para isso são necessárias pequenas quantidades de memória.

Edinilson e Verdin - 31/01/2011

Memória ROM

Memória ROM

As memórias ROM (Read-Only Memory - Memória Somente de Leitura) recebem esse nome porque os dados são gravados nelas apenas uma vez. Depois disso, essas informações não podem ser apagadas ou alteradas, apenas lidas pelo computador, exceto por meio de procedimentos especiais. Outra característica das memórias ROM é que elas são do tipo não voláteis, isto é, os dados gravados não são perdidos na ausência de energia elétrica ao dispositivo. Eis os principais tipos de memória ROM:
- PROM (Programmable Read-Only Memory): esse é um dos primeiros tipos de memória ROM. A gravação de dados neste tipo é realizada por meio de aparelhos que trabalham através de uma reação física com elementos elétricos. Uma vez que isso ocorre, os dados gravados na memória PROM não podem ser apagados ou alterados;
- EPROM (Erasable Programmable Read-Only Memory): as memórias EPROM têm como principal característica a capacidade de permitir que dados sejam regravados no dispositivo. Isso é feito com o auxílio de um componente que emite luz ultravioleta. Nesse processo, os dados gravados precisam ser apagados por completo. Somente depois disso é que uma nova gravação pode ser feita;
- EEPROM (Electrically-Erasable Programmable Read-Only Memory): este tipo de memória ROM também permite a regravação de dados, no entanto, ao contrário do que acontece com as memórias EPROM, os processos para apagar e gravar dados são feitos eletricamente, fazendo com que não seja necessário mover o dispositivo de seu lugar para um aparelho especial para que a regravação ocorra;
- EAROM (Electrically-Alterable Programmable Read-Only Memory): as memórias EAROM podem ser vistas como um tipo de EEPROM. Sua principal característica é o fato de que os dados gravados podem ser alterados aos poucos, razão pela qual esse tipo é geralmente utilizado em aplicações que exigem apenas reescrita parcial de informações;
- Flash: as memórias Flash também podem ser vistas como um tipo de EEPROM, no entanto, o processo de gravação (e regravação) é muito mais rápido. Além disso, memórias Flash são mais duráveis e podem guardar um volume elevado de dados. É possível saber mais sobre esse tipo de memória no artigo Cartões de memória Flash, publicado aqui no InfoWester;
- CD-ROM, DVD-ROM e afins: essa é uma categoria de discos ópticos onde os dados são gravados apenas uma vez, seja de fábrica, como os CDs de músicas, ou com dados próprios do usuário, quando o próprio efetua a gravação. Há também uma categoria que pode ser comparada ao tipo EEPROM, pois permite a regravação de dados: CD-RW e DVD-RW e afins.

Edinilson e Verdin - 31/01/2011

sábado, 29 de janeiro de 2011

Edinilson

Estudando muito nesse final de semana......................obrigado SENHOR!!!!!!!!!!!!!!!!!!!